
DEPARTMENT OF COMPUTER SCIENCE

PROGRAMME OUTCOME, PROGRAMME SPECIFIC OUTCOME,

LEARNING OUTCOME AND COURSE OUTCOME

PROGRAMME OUTCOME

Formulate and develop computational arguments in a logical manner. Also when

there is a need for information, the student will be able to identify, locate,

evaluate, and effectively use that information for handling issues or solving

problems at hand.

Acquire good knowledge and understanding in advanced areas of programming

and its applications.

PROGRAMME SPECIFIC

OUTCOME

Will be able to apply critical thinking skills to solve problems , to critically

interpret numerical and graphical data, to read and construct arguments and

proofs, to use computer technology appropriately to solve problems and to

promote understanding, to apply Computational and Logical knowledge to a

career related to Computer Science thus cultivating a proper attitude for higher

learning .

LEARNING OUTCOME

Students will be well equipped to critically analyse a given

problem, understand and write a program to represent the

problem and interpret the resulting solution. Students are well

prepared for higher studies in their chosen field.

COURSE OUTCOMES

C-PROGRAMMING:

C programming is utilized for the Development of system software

and Desktop application. Some C programming applications are

given below.

 Building Compilers of various Languages that can take data

from different programming and transform them into lower-

level machine-dependent language.

 To assess any numerical equation, use c programming.

 UNIX Kernel is entirely produced in C programming.

 C programming can be utilized to create Network Devices.

 To improve software applications like databases and

spreadsheets.

 C programming can be utilized to create system software like

the compiler and operating system.

 C programming can be utilized to design an Operating System.

 This language can be utilized to design compilers.

 It is used for developing Graphical applications for computers

and mobile.

C-PROGRAMMING

PRACTICALS – I

Develop skill to create simple programs in TURBO C, to generate particular

sequences , to find largest or smallest of the given numbers, to check for

palindromes... , Matrix addition, Matrix multiplication, GCD of two

numbers….using string handling functions…

DATA STRUCTURES

USING C

Data structures using C gives solutions to standard problems in detail and gives

an insight to students as how efficient it is to use each one of the algorithms and

methods. It also helps to learn the science of evaluating the efficiency of

an algorithm and how to best choose an algorithm.

▪ Introduction and Overview of Data Structures, data structures operations,

Abstract data types, algorithms complexity, time-space tradeoff.

Preliminaries: Mathematical notations and functions, Algorithmic notations,

control structures, Complexity of algorithms, asymptotic notations for

complexity of algorithms. String Processing: Definition, Storing Stings,

String as ADT, String operations, word/text processing, Pattern Matching

algorithms.

▪ Arrays: Definition, Linear arrays, arrays as ADT, Representation of Linear

Arrays in Memory, Traversing Linear arrays, Inserting and deleting, Sorting:

Bubble sort, Insertion sort, Selection sort, Searching: Linear Search, Binary

search, Multidimensional arrays, Matrices and Sparse matrices.

▪ Linked list: Definition, Representation of Singly linked list in memory,

Traversing a Singly linked list, Searching a Singly linked list, Memory

allocation, Garbage collection, Insertion into a singly linked list, Deletion

from a singly liked list; Doubly liked list, Header liked list, Circular linked

list.

▪ Stacks – Definition, Array representation of stacks, Linked representation of

stacks, Stack as ADT, Arithmetic Expressions: Polish Notation, Application

of Stacks, Recursion, Towers of Hanoi, Implementation of recursive

procedures by stack. Queues – Definition, Array representation of queue,

Linked list representation of queues Types of queue: Simple queue, Circular

queue, Double ended queue, Priority queue, Operations on Queues,

Applications of queues.

Graphs: Graph theory terminology, Sequential representation of Graphs:

Adjacency matrix, traversing a Graph. Tree – Definitions, Binary trees,

Representing binary trees in memory, Traversing Binary Trees, Binary Search

Trees, Searching, Inserting and Deleting in a Binary Search Tree.

DATA STRUCTURES

USING C

PRACTICALS

Students develop skills in implementations and applications of data structures.

Implementing basic algorithms for sorting and searching. Implementing

basic data structures such as stacks, queues and trees. Applying algorithms

and data structures in various real-life software problems.

DBMS

 Introduction, Characteristics of database approach, Advantages of using

the DBMS approach, History of database applications.

 Data Models, Schemas, and Instances. Three schema architecture and

data independence, database languages, and interfaces, The Database

System environment.

 Entity types, Entity sets, attributes, roles, and structural constraints, Weak

entity types, ER diagrams, examples, Specialization and Generalization.

 Relational Model Concepts, Relational Model Constraints and relational

database schemas, Update operations, transactions, and dealing with

constraint violations.

 Unary and Binary relational operations, additional relational operations

(aggregate, grouping, etc.) Examples of Queries in relational algebra.

 Relational Database Design using ER-to-Relational mapping.

 SQL data definition and data types, specifying constraints in SQL,

retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in

SQL, Additional features of SQL.

DBMS LAB

Data Models, Schemas, and Instances. Three schema architecture and

data independence, database languages, and interfaces, The Database

System environment.SQL data definition and data types, specifying

constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and

UPDATE statements in SQL, Additional features of SQL.

SHELL PROGRAMMING

USING UNIX

The shell is a program within a Linux or Unix operating system which allows you to

enter commands for execution by the system. When a terminal window is opened on a

linux computer, it starts the shell program which presents an interface to enter

commands. This interface is known as the command line interface. When a command

is entered, it is executed by the shell and the output is displayed on the screen.

Shell script is utilized for the Development of Desktop application. Some shell

programming benefits are given below.

 Shell scripting is an important skill to become a better

.developer or programmer.

 some simple control and loop constructs along with bash variables makes

a lot of difference

 To automate the frequently performed operations.

 To run sequence of commands as a single command.

 To improve software applications like databases and spreadsheets.

 Easy to use

 Portable (It can be executed in any Unix-like operating systems

without any modifications)

 Tool kit

SHELL PROGRAMMING

PRACTICALS – I

Develop skill to create simple programs in shell, to generate

particular sequences , to find largest or smallest of the given

numbers, to check for palindromes... , GCD of two

numbers….using string handling functions, create a payroll

system, generating greeting message…

OBJECT ORIENTED

PROGRAMMING USING

JAVA.

Java™ has significant advantages over other languages and environments that

make it suitable for just about any programming task. The advantages of Java are

as follows: Java is easy to learn. Java was designed to be easy to use and is

therefore easy to write, compile, debug, and learn than other programming

languages.

Few of the advantages of Java Programming Language are:

 Platform Independence : Java is platform independent, which means that if

a program is written and compiled in Java on any platform(underlying

hardware and software), it can run on any other platform of similar

capabilities subjected to available hardware (computing power, memory and

disk space) and software(installed JRE) requirements. This is achieved by the

virtue of the software component which is called Java Virtual Machine which

is an abstract computing machine .

 Automatic Storage Management : This is done using a garbage collector,

which avoids the safety problems of explicit de-allocations.

 Avoids Unsafe Constructs This helps in running the program correctly, else

imagine a scenario where the language does not check the array index and

returns a value which is stored in the memory location, but the memory

location is not within the boundaries of the array. This could pose a big

question on the correctness of your program.

https://medium.com/swlh/10-things-java-developer-should-learn-in-2019-5e0cf388e07f
https://medium.com/swlh/10-things-java-developer-should-learn-in-2019-5e0cf388e07f
https://medium.com/javarevisited/9-tips-to-become-a-better-java-programmer-cad4c9334cc1
https://javarevisited.blogspot.com/2011/06/special-bash-parameters-in-script-linux.html

 No explicit declaration order required : It does not require types (Classes

or Interfaces) or their members(fields and methods) to be declared before they

are used. It only becomes significant when we declare local variables, local

classes and the order of initializers of fields in a class or interface. All other

variables are automatically initialized to a default value, the Java

programming language does not automatically initialize local variables.

 Type Safety : Java is a safe programming language because of its static typed

and strongly typed nature. Statically typed means every variable is declared

and has a type and the type is known at the compile time. Strongly typed

means that a variable can only be assigned a set of values which are

compatible with the type of the variable. This also helps in identifying most of

the errors at compile time and clearly distinguishes them with the runtime

errors.

 Exception Handling Support : Java has defined an Exception Hierarchy and

has a great support for Exception Handling. This offers a lot of robustness and

helps the developers to handle compile time exceptions without fail and write

a defensive program.

 Multi-threading Support : Java encapsulates the underlying system’s thread

infrastructure and offers a great and easy support for multi threading. There is

no explicit need of writing a monitor code for acquiring a locks on objects.

 Applet Programming: Introduction, How Applets Differ from Applications,

Preparing to Write Applets, Building Applet Code, Applet Life Cycle,

Creating an Executable applet, Designing a Web Page, Applet Tag, Adding

Applet to HTML File, running the Applet, More About HTML Tags,

Displaying Numerical Values, Getting Input from the User.

 Graphics Programming: Graphics programming: Introduction, The

Graphics Class, Lines and rectangles, circles, and Ellipses, Drawing Arcs,

Drawing Polygons, Lines Graphs, Using Control Loops in Applets, Drawing

Bar Charts.

 Input/Output Files in JAVA: Introduction, Concept of Streams, Stream

Classes, Byte Stream Classes, Character Stream Classes, Using Streams,

Other Useful I/O Classes, Using the File Class, Input / Output Exceptions,

Creation of Files, Reading / Writing Characters, Reading / Writing Bytes,

Handling Primitive Data Types, Concatenating and Buffering Files,

Interactive Input and output, Other Stream Classes.

JAVA PROGRAMMING

PRACTICALS

Develop core java programs, to implement command line arguments , inbuilt

classes like String Math,Vector etc

Multiple threading, Applet programming, Graphics programming and I/O stream

programming etc.

VISUAL PROGRAMMING

 Customizing a Form - Writing Simple Programs - Toolbox - Creating

Controls - Name Property - Command Button - Access Keys - Image

Controls - Text Boxes - Labels - Message Boxes - Grid - Editing Tools -

Variables - Data Types - String - Numbers.

 Displaying Information - Determinate Loops - Indeterminate Loops -

Conditionals - Built-in Functions - Functions and Procedures.

 Lists - Arrays - Sorting and Searching - Records - Control Arrays -

Combo Boxes - Grid Control - Projects with Multiple forms - Do Events

and Sub Main - Error Trapping.

 VB Objects - Dialog Boxes - Common Controls - Menus - MDI Forms -

Testing, Debugging and Optimization - Working with Graphics.

 Monitoring Mouse activity .- File Handling - File System Controls - File

System Objects - COM/OLE - automation - DLL Servers - OLE Drag

and Drop.

VISUAL PROGRAMMING

LAB

Writing Simple Programs - Toolbox - Creating Controls - Name Property -

Command Button - Access Keys - Image Controls - Text Boxes - Labels -

Message Boxes - Grid - Editing Tools - Variables - Data Types - String -

Numbers. VB Objects - Dialog Boxes - Common Controls - Menus - MDI Forms

- Testing, Debugging and Optimization - Working with Graphics.

WEB PROGRAMMING

Web programming refers to the writing, markup and coding involved in Web

development, which includes Web content, Web client and server scripting and

network security. The most common languages used for Web programming are

XML, HTML, JavaScript. Web programming is different from just

programming,

 Fundamentals of Web: Internet, WWW, Web Browsers, and Web

Servers, URLs, MIME, HTTP, Security, The Web Programmers

Toolbox. XHTML: Origins and evolution of HTML and XHTML, Basic

syntax, Standard XHTML document structure, Basic text markup,

Images, Hypertext Links, Lists, Tables.

 HTML and XHTML: Forms, Frames in HTML and XHTML, Syntactic

differences between HTML and XHTML. CSS: Introduction, Levels of

style sheets, Style specification formats, Selector forms, Property value

forms, Font properties, List properties, Color, Alignment of text, The

Box model, Background images.

 Java Script: Overview of JavaScript; Object orientation and JavaScript;

General syntactic characteristics; Primitives, Operations, and

expressions; Screen output and keyboard input; Control statements;

Object creation and Modification; Arrays; Functions; Constructor;

Pattern matching using expressions; Errors in scripts; Examples.

 Java Script and HTML Documents: The JavaScript execution

environment; The Document Object Model; Element access in

JavaScript; Events and event handling; Handling events from the

Body elements, Button elements, Text box and Password elements;

The DOM 2 event model; The navigator object; DOM tree traversal

and modification.

 Dynamic Documents with JavaScript: Introduction to dynamic

documents; Positioning elements; Moving elements; Element

visibility; Changing colors and fonts; Dynamic content; Stacking

elements; Locating the mouse cursor; Reacting to a mouse click;

Slow movement of elements; Dragging and dropping elements. XML:

Introduction; Syntax; Document structure; Document Type

definitions; Namespaces; XML schemas; Displaying raw XML

documents; Displaying XML documents with CSS; XSLT style

sheets; XML Processors; Web services.

Web PROGRAMMING

PRACTICALS

Develop Web programs to implement many tags in web page. JavaScript code

to Evaluates the expression, dynamic effects, applying CSS, Create a web page

to display mouse position and use key events.

PROJECT Final Year students will be doing Project on Visual Basic/Visual Programming.

